Overview

& Firebase Cloud Messaging

Using Firebase Cloud Messaging you can notify an app client that a new email or other
data is available to be synced. You can send notification messages to drive user re-
engagement and retention. For use cases such as instant messaging, a message can
transfer a payload of up to 4000 bytes to an app client.

Check the official page for more information.

Setup

Before starting to use any Firebase extensions, you are required to follow some initial
configuration steps. However if you've already done these for any of the other modules
you can skip this configuration section and go straight to using the API functions.

* Create Project

* Platform Setup (iOS requires some additional steps)

Functions

The following functions are provided for working with the Firebase Cloud
Messaging extension:

FirebaseCloudMessaging_DeleteToken

FirebaseCloudMessaging_GetToken

FirebaseCloudMessaging_IsAutolnitEnabled

FirebaseCloudMessaging_SetAutolnitEnabled

FirebaseCloudMessaging_SubscribeToTopic


https://firebase.google.com/docs/cloud-messaging

» FirebaseCloudMessaging_UnsubscribeFromTopic



Create Project
Before working with any Firebase functions, you must set up your Firebase project:

1. Go to the Firebase Console web site.

2. Click on Add Project to create your new project.

@ Firebase console X +

& > C @ consolefirebase.google.com

‘ Firebase

Recent projects

+

Add project

O Explore a demo project

3. Enter a name for your project and click on the Continue button.


https://console.firebase.google.com/

X  Create a project (Step 1 of 3)

Let's start with a name for

your project®

Enter your project name

B3 Select parent resource

4. On the next page, make sure that Enable Google Analytics for this project is
enabled and then click the Continue button:

Create a project (Step 2 of 3)

VUUHIC mi |a|y LiILO

for your Firebase project

Google Analytics is a free and unlimited analytics solution that enables targeting,
reporting, and more in Firebase Crashlytics, Cloud Messaging, In-App Messaging, Remote
Config, A/B Testing, Predictions, and Cloud Functions.

Google Analytics enables:

A/B testing @ -Is. Crash-free users ()

User segmentation & targeting across  (» g Event-based Cloud Functions triggers

Firebase products
.|| Free unlimited reporting

o Predicting user behavior (?

» ‘ Enable Google Analytics for this project

Recommended

Previous Continue




5. Select your account and click the Create project button:

X  Create a project (Step 3 of 3)

Configure Google Analytics

Choose or create a Google Analytics account @

‘ .1, Default Account for Firebase v

Automatically create a new property in this account g*

Upon project creation, a new Google Analytics property will be created in your chosen Google Analytics account and linked to your
Firebase project. This link will enable data flow between the products. Data exported from your Google Analytics property into
Firebase is subject to the Firebase terms of service, while Firebase data imported into Google Analytics is subject to the Google
Analytics terms of service. Learn more.

Previous » Create project

6. Wait a moment until you project is created; after a few moments you should see
the page shown below:

yysetup

Q Your new project is ready




7. You will now be taken to your new project's home page:

‘ Firebase yysetup v Gotodocs fu J

ft  Project Overview o Receive email updates about new Firebase features, research, and events signup X

Build

yysetup

Firestore Database q

an Authentication

Realtime Database

Storage

. Get started by adding
T Firebase to your app

Machine Learning

Release & Monitor @ e @ |

&, Crashlytics

@ Performance

8ol

Add an app to get started

[ TestLab

J5 App Distribution

& Extensions

Store and sync app data in milliseconds

Spark

Upgrad
Free $0/month e

<

8. Continue your adventure with the Firebase extensions provided for GameMaker
Studio 2!



Platform Setup

Firebase Cloud Messaging implementation uses SDK dependencies and therefore is only
available on Android and iOS targets. In this section we will cover the required setup
necessary to start using the Cloud Messaging extension on your game.

Select your target platform below and follow the simple steps to get your project up and
running (you only need follow this setup once per project):

* Android Setup

* jOS Setup

Additional steps for i0S

On i0S you will need to retrieve a P8 certificate and upload it to your Firebase project to
enable sending push notifications through APNSs:

* Head to the Apple Developer site and select "Certificates, Identifiers & Profiles".

You_r Account Name

Certificates, ldentifiers & App Store Connect
Profiles

» Select "Keys" from the menu on the left, and create a new key by clicking on the
plus sign.


https://developer.apple.com/account

Certificates, Identifiers & Profiles

Certificates KeyS o ﬁ

Identifiers
NAME SERVICE

Devices

Profiles

Keys .

Mare

Enter a name for the key, enable Apple Push Notifications service (APNs) and click
on Continue.

< All Keys

Register a New Key Continue

Key Name
Firebase APNs

You cannot use special characters suchas @, & %, ", -, .

ENABLE NAME DESCRIPTION

Establish connectivity between your notification server and the Apple Push
Notification service. One key is used for all of your apps. Learn more

. Apple Push Notifications service (APNs)

On the next page, confirm the key details and click on Register.

Register a New Key [ Back \

t

Key Name
Firebase APNs

ENABLE NAME DESCRIPTION

Establish connectivity between your notification server and the Apple Push

Apple Push Notificati ice (APN
pple Push Notifications service ( s) Notification service. One key is used for all of your apps.

Note the information given here (key ID) and download the key as you will not be
able to see this screen again.




View Key Details \' Edit |

t

Name
Firebase APNs

Key ID
0000000000

Enabled Services

NAME CONFIGURATION

Apple Push Notifications service (APNs)

* Go to the dashboard for your Firebase project and open the Project Settings. Here,
open the Cloud Messaging tab.

#4 Project Overview P rOJ e Ct Sett i n g S

General Cloud Messaging Integrations
Build

&%  Authentication

* Select your iOS application, and under "APNs Authentication Key", press Upload to
upload your key.

Apple app configuration

Apple apps

tication key or APNs certificate to connect

[ i0S+ ) com.lol.beeglol

APNs Authentication Key

Y Configuration with auth keys is recommended as they are the more current

method for sending netifications to Apple devices

Upload

* Here, upload your P8 file and enter the other required details that you retrieved
from the Apple Developer site.




Upload APNs auth key

Drag file here to preview
Browse
Supports P&

You can now send notifications to the iOS client game by going under "Engage" and
selecting "Cloud Messaging" on your Firebase dashboard.

#~ Predictions
A/B Testing

Cloud Messaging

A

-

=] In-App Messaging
I3 Remote Config
é)

Dynamic Links



Android Setup

This setup is necessary for all the Firebase modules using Android and needs to be done
once per project, and basically involves importing the google-services.json file into your
project.

IMPORTANT Please refer to for instructions on setting up an
Android project.

Click the Settings icon (next to Project Overview) and select Project settings:
B Firebase yysetup v

A Project Overview 0 Project settings .

Users and permissions

Authe

2% Authentication I Authentica

Build .
Usage and billing

Now go to the Your apps section and click on the Android button:

yysetup ¥  Project settings

Web API Key

Public settings

These settings control instances of your project shown to the public

Public-facing name (@ I /'

Support email ® \Not configured

There are no apps in your project @ e @ Q
Select a platform to get started



https://help.yoyogames.com/hc/en-us/articles/115001368727

3. On this screen you need enter your Package name (required), App nickname
(optional) and Debug signing certificate SHA-1 (required if you are using Firebase
Authentication).

X Add Firebase to your Android app

a Register app

Android package name ®

com.company.appname

App nickname (optional) @

My Android App

Debug signing certificate SHA-1 (optional) &

» 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:t

You can get your package name from the Android Game Options, and your Debug
signing certificate SHA-1 from the Android Preferences (under Keystore):

Key Hash

Key Hash (SHAT1)

Show Key Hash Generate Keystore

4. Click on Download google-services.json (make sure to save this file as we will need
it in subsequent steps).


https://manual.yoyogames.com/#t=Settings%2FGame_Options%2FAndroid.htm
https://manual.yoyogames.com/#t=Setting_Up_And_Version_Information%2FPlatform_Preferences%2FAndroid.htm

X Add Firebase to your Android app

Q Register app

Android package name: com.yoyogames.YoyoPlayServices2, App nickname: yysetup_android

9 Download config file Instructions for Android Studio below | Unity C++

» ¥ Download google-services.json
N M} Packages Scra(chef;
Switch to the Project view in Android Studio to see = MyApplication y

your project root directory. A, C3.gradle
v .idea
Japp
build
libs
src
=| .gitignore
= app.iml
* build.gradle
=| proguard-rules.pro
gradle

Move the google-services.json file you just downloaded into
your Android app module root directory.

1 Z: Structure

& Captures

google-services.json

5. Ignore this screen, as this is already done in the extension.

X Add Firebase to your Android app

0 Register app

Android package name: com.yoyogames.YoyoPlayServices2, App nickname: yysetup_android

O Download config file

e Add Firebase SDK Instructions for Gradle |

The Google services plugin for Gradle [} loads the google-services. json file you just downloaded.
Modify your build.gradle files to use the plugin.

Project-level build.gradle (<project>/build.gradle):

buildscript {
repositories {
// Check that you have the following line (if not, add it):
google() // Google's Maven repository

}

dependencies {




6. Click on the Continue to console button.

X Add Firebase to your Android app

Q Register app

Android package name: com.yoyogames.YoyoPlayServices2, App nickname: yysetup_android

0 Download config file

O Add Firebase SDK

o Next steps

You're all set!

Make sure to check out the documentation [4 to learn how to get started with each Firebase product that
you want to use in your app.

You can also explore sample Firebase apps[/.

Or, continue to the console to explore Firebase.

Previous Continue to console

7. Now go into GameMaker Studio 2, right click on your Firebase extension asset and
click on Open In Explorer / Show In Finder.

r LuLal invuiinieauiviiags

v Firebase Analitycs
) YYFir create >

B ROOT create Extension ALT+E
>~ Objepyit

Firebase Edit Tags

Firebase Rename F2
Duplicate CTRL+D
' Favourite
Firebase Add Existing
Firebase oqd Existing From My Library

Firebase Delete Delete

Firebase

Firebase Create Group

v v v v v v v Vv

Yoyo Ext

B Firebase Expand All
Collapse All

Open In Explorer SHIFT+O



NOTE You only need to perform this set-up using one of your Firebase
extensions (per project); for this example we'll be using the Firebase
Analytics extension.

e Open the AndroidSource folder.
B Name Date modified Type
l AndroidSource 9/17/2021 8:39 AM File folder
l iOSProjectFiles 9/17/2021 8:39 AM File folder
B i0SSource 9/17/2021 8:39 AM File folder
. FirebaseAnalytics.ext 9/17/2021 8:39 AM EXT File
8 FirebaseAnalytics.js 9/17/2021 8:39 AM JavaScript F
R YYFirebaseAnalytics.yy 9/17/2021 8:39 AM YY File
9 Ifthe ProjectFiles folder does not exist, please create it.
aseAnalytics » AndroidSource v O 0O
B Name Date modified Type
l JEVE] 9/17/2021 8:39 AM File folder
W ProjectFiles 9/17/2021 8:39 AM File folder
2oL Open ProjectFiles folder and place your downloaded google-services.json file
inside it.
Source *> ProjectFiles v O £
B Name Date modified Type
@) google-services.json 9/17/2021 8:39 AM JSON File
11.

You have now finished the main setup for all Firebase Android modules!






i0S Setup

This setup is necessary for all the Firebase modules using iOS and needs to be done once
per project, and basically involves importing the GoogleServices-Info.plist file into your
project.

IMPORTANT Please refer to for instructions on setting up an iOS
project.

Click the Settings icon (next to Project Overview) and select Project settings:
B Firebase yysetup v

A Project Overview 0 Project settings .

Users and permissions

Authe

2% Authentication I Authentica

Build .
Usage and billing

Now go to the Your apps section and click on the iOS button:
yysetup ¥  Project settings
Web API Key

Public settings

These settings control instances of your project shown to the public

Public-facing name (@ I /'

Support email ® \Not configured

There are no apps in your project @ e @
Select a platform to get started



https://help.yoyogames.com/hc/en-us/articles/115001368747

3. Fill the form with your iOS Bundle ID, App nickname and AppStore ID (last two are
optional).

x  Add Firebase to your iOS app

o Register app

i0OS bundle ID ®

» kom.company.appname

App nickname (optional) ®

My iOS App

App Store ID (optional) ®

123456789

4. Click on Download GoogleService-info.plist (make sure to save this file as we will
need it in subsequent steps).



x  Add Firebase to your iOS app

Q Register app

iOS bundle ID: com.yoyogames.yyfirebase
e Download Conﬁg file Instructions for Xcode below | Unity C++

» i Download GoogleService-Info.plist

Move the GoogleService-Info.plist file you just downloaded into the root of your Xcode project and add it to
all targets.

B2 Qao=o
\ 4 &‘ MyApplication
v MyApplication
3 AppDelegate.swift
s ViewController.swift
Main.storyboard
1] Assets.xcassets

GoogleService-Info.plist LaunchScreen.storyboard

Info.plist

B GoogleService-Info.plist

[N Dradiinte

5. lgnore this screen, as this is already done in the extension.

x  Add Firebase to your iOS app

° Register app

iOS bundle ID: com.yoyogames.yyfirebase

o Download config file

e Add Firebase SDK Instructions for CocoaPods | SwiftPM Download ZIP Unity C++

Google services use CocoaPods [/ to install and manage dependencies. Open a terminal window and
navigate to the location of the Xcode project for your app.

Create a Podfile if you don't have one:

S pod init |_|:|
Open your Podfile and add:

# add the Firebase pod for Google Analytics

6. Ignore this screen as well, as this is also done in the extension.




x  Add Firebase to your iOS app

Q Register app

iOS bundle ID: com.yoyogames.yyfirebase

o Download config file
o Add Firebase SDK

0 Add initialization code

To connect Firebase when your app starts up, add the initialization code below to your main AppDelegate
class.

@ swift () Objective-C
import UIKit
import Firebase

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate

7. Click on the Continue to console button:

x  Add Firebase to your iOS app

Q Register app

iOS bundle ID: com.yoyogames.yyfirebase

o Download config file

Add Firebase SDK

(/]
0 Add initialization code
(5

Next steps

You're all set!

Make sure to check out the documentation [} to learn how to get started with each Firebase product that
you want to use in your app.

You can also explore sample Firebase apps [/].

Or, continue to the console to explore Firebase.

Previous Continue to console




8. Now go into GameMaker Studio 2, right click on your Firebase extension asset and
click on Open In Explorer / Show In Finder.

9.

10.

r LuLal invuliiniwauiviio

Firebase Analitycs
) YYFir create

83 ROOF create Extension
>~ Obje it
Firebase Edit Tags

Firebase Rename

Firebase Prjpllezie

Favourite

FlEetEL Add Existing

Firebase Delete

Firebase Create Group

v v v v v v v Vv

Yoyo Ext

B Firebase Expand All
Collapse All

Open In Explorer

ALT+E

F2
CTRL+D

Firebase oqd Existing From My Library

Delete

SHIFT+O

NOTE You only need to perform this set-up using one of your Firebase
extensions (per project); for this example we'll be using the Firebase

Analytics extension.

If the iOSProjectFiles folder does not exist, please create it.

as

B Name

l AndroidSource

W iOSProjectFiles

l iOSSource

B FirebaseAnalytics.ext

d FirebaseAnalytics.js

| YYFirebaseAnalytics.yy

Open the iOSProjectFiles folder and
inside it.

Date modified Type
9/17/2021 8:39 AM File folder
9/17/2021 8:39 AM File folder
9/17/2021 8:39 AM File folder
9/17/2021 8:39 AM EXT File
9/17/2021 8:39 AM JavaScript F
9/17/2021 8:39 AM YY File

place your GoogleService-Info.plist file



aseAnalytics > iOSProjectFiles v O pe

s

B Name Date modified Type

0 GoogleService-Info.plist 9/17/2021 8:39 AM PLIS

L Make sure to set up CocoaPods for your project unless you are only using the
REST API in an extension (if one is provided -- not all extensions provide a REST
API) or the Firebase Cloud Functions extension (which only uses a REST API).
12.

You have now finished the main setup for all Firebase iOS modules!


https://help.yoyogames.com/hc/en-us/articles/360008958858-iOS-and-tvOS-Using-CocoaPods

Deletes the FCM registration token for this Firebase project. Note that if auto-init is
enabled, a new token will be generated the next time the app is started. Disable auto-init
(using the function FirebaseCloudMessaging_SetAutolnitEnabled) to avoid this behavior.

This is an asynchronous function that will trigger the Async Social event when the task

is finished.

Syntax:

FirebaseCloudMessaging DeleteToken();

Returns:

N/A

Triggers:

Asynchronous Social Event

type string The constant "FirebaseCloudMessaging DeleteToken"

success boolean Whether or not the function task succeeded.

Example:

FirebaseCloudMessaging_DeleteToken()

In the code above we request for the FCM token to be deleted. The function callback can
be caught inside an Async Social event.

if(async_load[?"type'] == "FirebaseCloudMessaging DeleteToken™)
{

if(async_load[?"success"])

{


https://manual-en.yoyogames.com/#t=The_Asset_Editors%2FObject_Properties%2FAsync_Events%2FSocial.htm

show_debug_message(FCM token deleted")

The code above matches the response against the correct event type, and provides a
success message if success is true.



Requests the FCM registration token for this Firebase project. This sends information
about the application and the device where it's running to the Firebase backend.
See FirebaseCloudMessaging_DeleteToken for information on deleting the token.

This is an asynchronous function that will trigger the Async Social event when the task
is finished.

Syntax:

FirebaseCloudMessaging_GetToken();

Returns:

N/A

Triggers:

Asynchronous Social Event

type string The constant "FirebaseCloudMessaging_GetToken"
success boolean Whether or not the function task succeeded.

value string The FCM registration token.

Example:

FirebaseCloudMessaging_GetToken()

In the code above we request for the current FCM token. The function callback can be
caught inside an Async Social event.


https://manual-en.yoyogames.com/#t=The_Asset_Editors%2FObject_Properties%2FAsync_Events%2FSocial.htm

if(async_load[?"type"] == "FirebaseCloudMessaging_GetToken')

{
if(async_load[?"success"])
{
global.fcmToken = async_load[? "value"];
}
}

The code above matches the response against the correct event type, and if the tasks
succeeds it stores the token value into a global variable ( global.fcmToken ),



Returns whether FCM auto-initialization is enabled or disabled.

Syntax:

FirebaseCloudMessaging_lsAutolnitEnabled()

Returns:

Boolean

Example:

if (FirebaseCloudMessaging_IsAutolnitEnabled())
{

}

FirebaseCloudMessaging SetAutoInitEnabled(false)

The code above checks if auto-initialization is enabled and if it is it disables
it (using FirebaseCloudMessaging_SetAutolnitEnabled).



Enables or disables auto-initialization of Firebase Cloud Messaging.

When enabled, Firebase Cloud Messaging generates a registration token on app startup if
there is no valid one (see FirebaseCloudMessaging_GetToken) and periodically sends data
to the Firebase backend to validate the token. This setting is persistent across app

restarts.

- By default, Firebase Cloud Messaging auto-initialization is enabled.

Syntax:

FirebaseCloudMessaging_SetAutolnitEnabled(enabled)

Whether auto-initialization should be turned on

enabled boolean
or off.

Returns:
N/A
Example:
it (FirebaseCloudMessaging IsAutolnitEnabled())
{
FirebaseCloudMessaging SetAutoInitEnabled(false)
}
The code above checks if auto-initialization is enabled (using

the FirebaseCloudMessaging_IsAutolnitEnabled function) and if it is disables it.



Subscribes the user to the given topic in the background. The subscription operation is
persistent and will keep retrying until it is successful. This uses the FCM registration token
to identify the app instance, generating one if it does not exist (see
FirebaseCloudMessaging_GetToken), which periodically sends data to the Firebase
backend when auto-init is enabled. To delete the data, delete the token (see
FirebaseCloudMessaging_DeleteToken).

This is an asynchronous function that will trigger the Async Social event when the task
is finished.

Syntax:

FirebaseCloudMessaging_SubscribeToTopic(topic)

Returns:

N/A

Triggers:

Asynchronous Social Event

Example:



FirebaseCloudMessaging_SubscribeToTopic(*'my_awesome_topic')

In the code above we request a subscription to a topic ( "my_awesome topic™ ). The function
callback can be caught inside an Async Social event.

if(async_load[?"type'] == "FirebaseCloudMessaging_SubscribeToTopic')
{

var _topic = async_load[? "topic"];

if(async_load[?"success"])

{
show_debug message(Subscription to " + topic + " SUCCEEDED")
}
else
{
show_debug message(Subscription to " + _topic + " FAILED")
}

The code above matches the response against the correct event type, and if the tasks

succeeds it stores the topic value in a local variable ( _topic ) and logs the success of the
operation.


https://manual-en.yoyogames.com/#t=The_Asset_Editors%2FObject_Properties%2FAsync_Events%2FSocial.htm

Unsubscribes from a previously subscribed topic (see
FirebaseCloudMessaging_SubscribeToTopic) in the background. The unsubscribe
operation is persistent and will keep retrying until it is completed.

This is an asynchronous function that will trigger the Async Social event when the task
is finished.

Syntax:

FirebaseCloudMessaging_UnsubscribeFromTopic(topic)

Returns:

N/A

Triggers:

Asynchronous Social Event

Example:

FirebaseCloudMessaging_UnsubscribeFromTopic(*'my_awesome_topic')



In the code above we request for the subscription to the topic “my_awesome topic* to be
canceled. The function callback can be caught inside an Async Social event.

if(async_load[?"type'] == "FirebaseCloudMessaging_UnsubscribeFromTopic™)
{

var _topic = async_load[? "topic"];

if(async_load[?"success"])

{

show_debug_message(Subscription removed successfully")
}
else
{

show_debug message(Subscription could not be removed")
}

The code above matches the response against the correct event type, and if the tasks

succeeds it stores the topic value in a local variable ( _topic ) and logs the success of the
operation.


https://manual-en.yoyogames.com/#t=The_Asset_Editors%2FObject_Properties%2FAsync_Events%2FSocial.htm

	Overview
	Setup
	Functions
	Create Project
	Platform Setup
	Additional steps for iOS
	Android Setup
	iOS Setup
	FirebaseCloudMessaging_DeleteToken
	Syntax:
	Returns:
	Triggers:
	Example:

	FirebaseCloudMessaging_GetToken
	Syntax:
	Returns:
	Triggers:
	Example:

	FirebaseCloudMessaging_IsAutoInitEnabled
	Syntax:
	Returns:
	Example:

	FirebaseCloudMessaging_SetAutoInitEnabled
	Syntax:
	Returns:
	Example:

	FirebaseCloudMessaging_SubscribeToTopic
	Syntax:
	Returns:
	Triggers:
	Example:

	FirebaseCloudMessaging_UnsubscribeFromTopic
	Syntax:
	Returns:
	Triggers:
	Example:


